class Int
ErrorsCollection

class Int

Integer (arbitrary-precision)

class Int is Cool does Real { }

Int objects store integral numbers of arbitrary size. Ints are immutable.

There are two main syntax forms for Int literals

123;         # Int in decimal notation 
:16<BEEF>;   # Int in radix notation

For your convenience common radix forms come with a prefix shortcut.

say so :2<11111111> == 0b11111111 == :8<377> == 0o377 == 255 == 0d255 == :16<ff> == 0xff;
# OUTPUT: «True␤»

All forms allow underscores between any two digits which can serve as visual separators, but don't carry any meaning:

5_00000;       # five Lakhs 
500_000;       # five hundred thousand 
0xBEEF_CAFE;   # a strange place 
:2<1010_1010># 0d170

Radix notation also supports round and angle brackets which allow you to parse a string for a given base, and putting together digits into a whole number respectively:

:16("9F");         # 159 
:100[9923];    # 990203

These notations allow you to use variables, too:

my $two = "2";
my $ninety-nine = "99";
:16($ninety-nine); # 153 
:100[99$two3]; # 990203

Methods

method new

multi method new(Any:U $type)
multi method new(Any:D \value --> Int:D)
multi method new(int   \value --> Int:D)

The first form will throw an exception; the second and third form will create an new Int from the actual integer value contained in the variable.

method Capture

method Capture()

Throws X::Cannot::Capture.

routine chr

multi sub    chr(Int:D  --> Str:D)
multi method chr(Int:D: --> Str:D)

Returns a one-character string, by interpreting the integer as a Unicode codepoint number and converting it to the corresponding character.

Example:

65.chr;  # returns "A" 
196.chr# returns "Ä"

routine expmod

multi sub    expmod(      $x,     $y,     $mod --> Int:D)
multi sub    expmod(Int:D $xInt $yInt $mod --> Int:D)
multi method expmod(Int:D:    Int $yInt $mod --> Int:D)

Returns the given Int raised to the $y power within modulus $mod, that is gives the result of ($x ** $y) mod $mod. The subroutine form can accept non-Int arguments, which will be coerced to Int.

say expmod(425);    # OUTPUT: «1␤» 
say 7.expmod(25);     # OUTPUT: «4␤»

$y argument can also be negative, in which case, the result is equivalent to ($x ** $y) mod $mod.

say 7.expmod(-25);     # OUTPUT: «4␤»

method polymod

method polymod(Int:D: +@mods)

Returns a sequence of mod results corresponding to the divisors in @mods in the same order as they appear there. For the best effect, the divisors should be given from the smallest "unit" to the largest (e.g. 60 seconds per minute, 60 minutes per hour) and the results are returned in the same way: from smallest to the largest (5 seconds, 4 minutes). The last non-zero value will be the last remainder.

say 120.polymod(10);    # OUTPUT: «(0 12)␤» 
say 120.polymod(10,10); # OUTPUT: «(0 2 1)␤»

In the first case, 120 is divided by 10 giving as a remainder 12, which is the last element. In the second, 120 is divided by 10, giving 12, whose remainder once divided by 10 is 2; the result of the integer division of 12 div 10 is the last remainder. The number of remainders will be always one more item than the number of given divisors. If the divisors are given as a lazy list, runs until the remainder is 0 or the list of divisors is exhausted. All divisors must be Ints, unless the method is called on a non-Int number.

my $seconds = 1 * 60*60*24 # days 
            + 3 * 60*60    # hours 
            + 4 * 60       # minutes 
            + 5;           # seconds 
 
say $seconds.polymod(6060);                # OUTPUT: «(5 4 27)␤» 
say $seconds.polymod(606024);            # OUTPUT: «(5 4 3 1)␤» 
 
say 120.polymod:      11010², 10³, 10⁴;  # OUTPUT: «(0 0 12 0 0 0)␤» 
say 120.polymod: lazy 11010², 10³, 10⁴;  # OUTPUT: «(0 0 12)␤» 
say 120.polymod:      11010² … ∞;        # OUTPUT: «(0 0 12)␤» 
 
say ⅔.polymod(⅓);                            # OUTPUT: «(0 2)␤» 
say 5.Rat.polymod(.3.2);                   # OUTPUT: «(0.2 0 80)␤» 
 
my @digits-in-base37 = 9123607.polymod(37 xx *); # Base conversion 
say @digits-in-base37.reverse                    # OUTPUT: «[4 32 4 15 36]␤»

To illustrate how the Int, non-lazy version of polymod works, consider this code that implements it:

my $seconds = 2 * 60*60*24 # days 
            + 3 * 60*60    # hours 
            + 4 * 60       # minutes 
            + 5;           # seconds 
 
my @pieces;
for 606024 -> $divisor {
    @pieces.push: $seconds mod $divisor;
    $seconds div= $divisor
}
@pieces.push: $seconds;
 
say @pieces# OUTPUT: «[5 4 3 2]␤»

For a more detailed discussion, see this blog post.

We can use lazy lists in polymod, as long as they are finite:

my $some-numbers = lazy gather { take 3*$_ for 1..3 };
say 600.polymod$some-numbers ); # OUTPUT: «(0 2 6 3)␤» 

routine is-prime

multi sub    is-prime (Int:D $number --> Bool:D)
multi method is-prime (Int:D: --> Bool:D)

Returns True if this Int is known to be a prime, or is likely to be a prime based on a probabilistic Miller-Rabin test.

Returns False if this Int is known not to be a prime.

say 2.is-prime;         # OUTPUT: «True␤» 
say is-prime(9);        # OUTPUT: «False␤»

routine lsb

multi method lsb(Int:D:)
multi sub    lsb(Int:D)

Short for "Least Significant Bit". Returns Nil if the number is 0. Otherwise returns the zero-based index from the right of the least significant (rightmost) 1 in the binary representation of the number.

say 0b01011.lsb;        # OUTPUT: «0␤» 
say 0b01010.lsb;        # OUTPUT: «1␤» 
say 0b10100.lsb;        # OUTPUT: «2␤» 
say 0b01000.lsb;        # OUTPUT: «3␤» 
say 0b10000.lsb;        # OUTPUT: «4␤»

routine msb

multi method msb(Int:D:)
multi sub    msb(Int:D)

Short for "Most Significant Bit". Returns Nil if the number is 0. Otherwise returns the zero-based index from the right of the most significant (leftmost) 1 in the binary representation of the number.

say 0b00001.msb;        # OUTPUT: «0␤» 
say 0b00011.msb;        # OUTPUT: «1␤» 
say 0b00101.msb;        # OUTPUT: «2␤» 
say 0b01010.msb;        # OUTPUT: «3␤» 
say 0b10011.msb;        # OUTPUT: «4␤»

routine unival

multi sub    unival(Int:D  --> Numeric)
multi method unival(Int:D: --> Numeric)

Returns the number represented by the Unicode codepoint with the given integer number, or NaN if it does not represent a number.

say ord("¾").unival;    # OUTPUT: «0.75␤» 
say 190.unival;         # OUTPUT: «0.75␤» 
say unival(65);         # OUTPUT: «NaN␤»

method Range

Returns a Range object that represents the range of values supported.

method Bridge

method Bridge(Int:D: --> Num:D)

Returns the integer converted to Num.

Operators

infix div

multi sub infix:<div>(Int:DInt:D --> Int:D)

Does an integer division, rounded down.